BP Comment Quick Links
Vote in the Internet Baseball Awards for a chance at a free copy of Dollar Sign on the Muscle


October 14, 2004 Lies, Damned LiesUsing the Golden Run Ratio
One of the classic managerial dilemmasperhaps the classic managerial dilemmais whether to remove a starter who is still throwing pretty well for a middle reliever in the sixth, seventh or eighth inning. This decision is relatively straightforward if the sole concern is winning the game in question. You trot your butt out to the mound, the pitcher grabs his crotch a couple times and spits out his chaw and tells you that his arm still feels real good, and then you sit back down in the dugout ask the pitching coach what's really going on. If the pitching coach tells you that the guy throwing in the bullpen is likely to be more effective than the starter, you make the switch. Otherwise, you leave the dude out there. Certainly, it's possible to make an error of judgment now and thenfiguring out just how much fatigue will reduce a pitcher's effectiveness is a guessing game of sortsbut fundamentally, the problem is simple. Things become much more complicated if you are concerned not only about the outcome of the current game, but also the outcomes of future games. If your ace has given you a 80 lead after seven innings with a pitch count of 110 or so, common sense dictates that you pull the guy before the eighth. You sacrifice some very small amount of expectation in the nearterm if you replace him with an inferior alternativemaybe you'll win 99.68% of the time instead of 99.72%but the future benefit of keeping him healthy and wellrested for subsequent outings well outweighs this. It isn't always that easy, though, especially in the postseason when pitchers are frequently asked to throw highpressure innings against good offenses on short rest. Nor is the impact on future games easy to determine. If Roy Oswalt is going to be marginally less effective in Game 5 because he went an extra inning in Game 2, how much will that impact Houston's probability of winning the ballgame? How much should the impact on Game 5 be discounted since there might not be one at all? Those questions are vexing to answer, but we can try and quantify the impact that removing a better pitcher for a worse one will have on a game whose outcome is in immediate doubt. Let's take Ron Gardenhire's decision to remove Johan Santana in Game 1 of the ALDS as an example. Santana, in spite of a thin, tworun lead and the appearance of having plenty left in his tank, was pulled in favor of Juan Rincon after seven innings and 93 pitches. Rincon, it is true, had a pretty good season, but was not quite as good as his ERA suggests, and nothing along the lines of a postAll Star Break Santana; the Twins were giving a little something up by making the switch. For purposes of this problem, let us assume the following:
In other words, the Twins' disadvantage stems from displace one inning of 2.00 ERA pitcher with one inning of 3.50 ERA pitcher. How much does this reduce their chances of winning the game? Our model needs to take into account the following:
It's that latter point that gets a bit complicated. We can figure that if Santana has a 2.00 ERA, and Rincon has a 3.50 ERA, the difference between the two is 1.5 earned runs per game, or 1/6th of a run per inning if we divide that figure by nine. So now we project the final score to be: Twins 2, Yankees 0.16666667. Not very helpful, right? What we really need is a distribution. By that I mean: how often will a pitcher with a 4.00 ERA give up two runs in an inning? How often will a pitcher with a 3.35 ERA pitch a shutout inning? How often will the Angels put up a fivespot against Nate Cornejo? Stuff like that. As a starting point, I looked at the distribution of run scoring across all major league halfinnings in 2003. Runs scored by one club in an inning, MLB 2003 Runs Scored Frequency Percent  0 30922 71.1% 1 6845 15.7% 2 3011 6.9% 3 1507 3.5% 4 670 1.5% 5 305 0.7% 6 117 0.3% 7 62 0.1% 8 12 0.0% 9 6 0.0% 10 6 0.0% 11 0 0.0% 12 1 0.0% 13 1 0.0% 14 1 0.0%MLB teams, in the current run environment, score one or more runs in a frame around 30 percent of the time. I suspect that most of you, if asked to guess at the figure before seeing the data, would have estimated something reasonably close to that. Multiplerun innings are rare, occurring 13.2% of the time. An inning of five or more runs comes up once every five games or so. One interesting property is that the run scoring distribution appears to be governed by an exponential decay function: By that I mean, the ratio of fourrun innings to threerun innings is approximately the same is the ratio of threerun innings to tworun innings, the ratio of tworun innings to onerun innings, and so forth. We'll call this number g, for Golden Run Ratio. The ratio of onerun innings to scoreless innings is not the same as the restruns tend to come in bunches, and it's a lot harder to score the first one than the secondbut conveniently enough it works out to be almost exactly twice as large as the other ratios, or 2g. I'll skip describing the algebra and the fancy Excel trickery that this involves, but as it works out, it is possible to pick an appropriate number ga Golden Run Ratiothat fits any particular level of offensive output that we might want. For example, for a team that scores 5.0 runs per game, the "correct" g is 4.33. For a team that scores 3.0 runs per game, g is 5.64. Lower runscoring outputs are associated with higher Golden Run Ratios, and the larger that g is, the larger the ratio of 0run innings to 1run innings (implying more shutout innings), 1run innings to 2run innings (implying fewer multirun innings), and so forth. Here, for example, are the estimated runscoring frequencies for teams scoring 3.0, 5.0 and 7.0 runs per game, as well as the actual runscoring distribution in 2003 (MLB teams scored roughly 4.8 runs per game last year). I should point out that I haven't validated the run scoring ratios empiricallyit's possible that the curve takes on a somewhat different shape at very high or very low levels of runscoring outputbut the relationship is elegant enough and organic enough that I'm comfortable with it. (Sign of the apocalypse: a stathead starts talking about how a ratio pleases him aesthetically). This has been quite a grand diversionthe Yankees have scored 36 runs off Curt Schilling in the time that I've been writing thisso let's get back to the problem at hand. The Yankees have a good offense, averaging 5.52 runs per game versus almost exactly 5.00 for the league as a whole, and we need to account for that in our analysis. After using a version of the log 5 formula and making an adjustment for unearned runs, we figure that they'll score about 2.37 RPG against Santana, 4.15 against Rincon, and 2.96 against Nathan. Here are what the Yankees' run distributions look like against Ron Gardenhire's eighthinning options: New York will score one or more runs 26.7% of the time against Rincon, versus 18.2% of the time against Santanaroughly a 50% increase. They'll score two or more runs 11.2% of the time against Rincon, and 5.6% of the time against Santana, or almost exactly twice as often. We also need to know about the Twins, since they'll have a chance to add to their lead in the ninth, but with Mariano Rivera warming up (we'll figure him for a 2.00 ERA) and an mediocre offense, they figure to score at a level of just 2.06 RPG against him, which results in their getting shut out on the inning 83.5% of the time. All of this corresponds to the Yankees winning 13.1% of the time if Rincon pitches the eighth, and 8.9% of the time if Santana pitches the eighth. In other words, pulling Santana early will cost the Twins the game 4.2% of the time, or about one time in 24. (I have skipped some tedious steps here involving mapping win probabilities to run scoring distributions, but the procedure is simple and should be accurate, provided that our assumptions are correct. For the sake of completeness I will mention that I assume that the game is a coinflip if it goes into extra innings tied.) One time in 24? Is that chance worth taking for the opportunity to preserve Santana's arm strength for Game Four? Well, I've already said that I wasn't going to try and come up with a definitive answer to that part of the equation, but I owe you guys at least a guess, grain of salt and all. Let's assume that the Twins will face an opposing Yankee starter with a 4.00 ERA for the first seven innings of Game Four, and relief pitchers with a 3.00 ERA for the last two innings of Game Four. Let's further assume that:
We throw these numbers into the model I've just described and come up with the following:
That works out to a 3.6% difference, which is close enough to the margin of error to let Gardenhire off the hook. Are those numbers reasonable? Keith Woolner and Rany Jazayerli's research in Baseball Prospectus 2002, which I'm oversimplifying here, suggests that a tired pitcher can expect to experience an ERA increase of somewhere between 2% and 5% from his baseline level in his subsequent outings, so the 12.5% increase we've predicted for Santana looks to be a little out of line. On the other hand, it's easy to imagine that the effects of fatigue will be much amplified on short rest, and expecting any pitcher to maintain a 2.00 ERA in this day and age requires him to be more or less mechanically flawless. I don't think my estimate is unreasonable, and I don't think that Gardenhire's decision was obviously wrong, In general, you never want to do anything that reduces your chances of winning in a highleverage situation in a highimpact game, though if it could effect the course of six or seven innings in a subsequent game of equal importance, the decision may be defensible. (Though, as Joe Sheehan points out, the option of replacing Santana with Rincon was strategically dominated by having Joe Nathan go two innings instead). You may also detect some tension between our sometimes advocating for aggressive use of pitchers during the postseason and our stronglyexpressed distaste for pitcher overuse during the regular season. But both cases are simply a matter of a team maximizing its utility. According to Clay Davenport's figures, winning Game One of an LDS will increase a team's chances of winning the World Series by somewhere in the neighborhood of five percent. Whether that seems like a lot or not I don't know, but it's surely many magnitudes of order larger than the corresponding percentage increase from winning an additional regular season game. I recognize that there's an ethical component to preventing pitcher abuse that shouldn't be dismissed, but the soundest argument rests in strategy. What is the loss in World Series win percentage that the Cubs suffer if Mark Prior's risk of catastrophic injury increases from 3.2% to 4.0% as the result of a 135pitch outing? Probably somewhat larger than the marginal gain from having a marginally higher chance of winning a regularseason game, but considerably smaller than the marginal gain if it's Game 7 of the World Series. I'll close out by providing benchmarks for some common situations that occur during the regular season. We'll use the following assumptions in all our examples:
Scenario 1. Cubs have a fourrun lead after six innings. Cubs' chances of winning are 95.6% if Zambrano pitches the seventh and 94.5% if the bullpen does (1.1% reduction). Scenario 2. Cubs have a threerun lead after seven innings. Cubs' chances of winning are 95.0% if Zambrano pitches the eighth and 93.3% if the bullpen does (1.7% reduction). Scenario 3. Cubs have a onerun lead after eight innings. Cubs' chances of winning are 95.0% if Zambrano pitches the ninth and 88.2% if the bullpen does (6.8% reduction). Scenario 4. Game is tied after six innings. Cubs' chances of winning are 53.4% if Zambrano pitches the seventh and 51.0% if the bullpen does (2.4% reduction). Scenario 5. Astros have a onerun lead after seven innings. Cubs' chances of winning are 27.8% if Zambrano pitches the eighth and 26.4% if the bullpen does (1.4% reduction). Certainly, some situations are more important than others, but it's a real stretch to say that the entire game hinges on getting one last inning out of the starter, even when he is very good and the bullpen alternatives are pretty bad. But during the postseason, the mere chance that the outcome of the game depends on extending a starter is important enough that the strategic imperatives are profoundly different.
Nate Silver is an author of Baseball Prospectus. 0 comments have been left for this article.
 