
Articles Tagged Replacement LevelSearch BP ArticlesAll Blogs (including podcasts) Active Columns Authors Article Types Archives
This is a BP Premium article. To read it, sign up for Premium today! October 11, 2006 12:00 am
The Tigers take on a completely different personality at the plate, and use it to win. \nMathematically, leverage is based on the win expectancy work done by Keith Woolner in BP 2005, and is defined as the change in the probability of winning the game from scoring (or allowing) one additional run in the current game situation divided by the change in probability from scoring\n(or allowing) one run at the start of the game.'; xxxpxxxxx1160590386_18 = 'Adjusted Pitcher Wins. Thorn and Palmers method for calculating a starters value in wins. Included for comparison with SNVA. APW values here calculated using runs instead of earned runs.'; xxxpxxxxx1160590386_19 = 'Support Neutral Lineupadjusted Value Added (SNVA adjusted for the MLVr of batters faced) per game pitched.'; xxxpxxxxx1160590386_20 = 'The number of double play opportunities (defined as less than two outs with runner(s) on first, first and second, or first second and third).'; xxxpxxxxx1160590386_21 = 'The percentage of double play opportunities turned into actual double plays by a pitcher or hitter.'; xxxpxxxxx1160590386_22 = 'Winning percentage. For teams, Win% is determined by dividing wins by games played. For pitchers, Win% is determined by dividing wins by total decisions. '; xxxpxxxxx1160590386_23 = 'Expected winning percentage for the pitcher, based on how often\na pitcher with the same innings pitched and runs allowed in each individual\ngame earned a win or loss historically in the modern era (1972present).'; xxxpxxxxx1160590386_24 = 'Attrition Rate is the percent chance that a hitters plate appearances or a pitchers opposing batters faced will decrease by at least 50% relative to his Baseline playing time forecast. Although it is generally a good indicator of the risk of injury, Attrition Rate will also capture seasons in which his playing time decreases due to poor performance or managerial decisions. '; xxxpxxxxx1160590386_25 = 'Batting average (hitters) or batting average allowed (pitchers).'; xxxpxxxxx1160590386_26 = 'Average number of pitches per start.'; xxxpxxxxx1160590386_27 = 'Average Pitcher Abuse Points per game started.'; xxxpxxxxx1160590386_28 = 'Singles or singles allowed.'; xxxpxxxxx1160590386_29 = 'Batting average; hits divided by atbats.'; xxxpxxxxx1160590386_30 = 'Percentage of pitches thrown for balls.'; xxxpxxxxx1160590386_31 = 'The Baseline forecast, although it does not appear here, is a crucial intermediate step in creating a players forecast. The Baseline developed based on the players previous three seasons of performance. Both major league and (translated) minor league performances are considered.
October 9, 2006 12:00 am
Keith checks in with all kinds of fun facts from the completed season. \nMathematically, leverage is based on the win expectancy work done by Keith Woolner in BP 2005, and is defined as the change in the probability of winning the game from scoring (or allowing) one additional run in the current game situation divided by the change in probability from scoring\n(or allowing) one run at the start of the game.'; xxxpxxxxx1160407218_18 = 'Adjusted Pitcher Wins. Thorn and Palmers method for calculating a starters value in wins. Included for comparison with SNVA. APW values here calculated using runs instead of earned runs.'; xxxpxxxxx1160407218_19 = 'Support Neutral Lineupadjusted Value Added (SNVA adjusted for the MLVr of batters faced) per game pitched.'; xxxpxxxxx1160407218_20 = 'The number of double play opportunities (defined as less than two outs with runner(s) on first, first and second, or first second and third).'; xxxpxxxxx1160407218_21 = 'The percentage of double play opportunities turned into actual double plays by a pitcher or hitter.'; xxxpxxxxx1160407218_22 = 'Winning percentage. For teams, Win% is determined by dividing wins by games played. For pitchers, Win% is determined by dividing wins by total decisions. '; xxxpxxxxx1160407218_23 = 'Expected winning percentage for the pitcher, based on how often\na pitcher with the same innings pitched and runs allowed in each individual\ngame earned a win or loss historically in the modern era (1972present).'; xxxpxxxxx1160407218_24 = 'Attrition Rate is the percent chance that a hitters plate appearances or a pitchers opposing batters faced will decrease by at least 50% relative to his Baseline playing time forecast. Although it is generally a good indicator of the risk of injury, Attrition Rate will also capture seasons in which his playing time decreases due to poor performance or managerial decisions. '; xxxpxxxxx1160407218_25 = 'Batting average (hitters) or batting average allowed (pitchers).'; xxxpxxxxx1160407218_26 = 'Average number of pitches per start.'; xxxpxxxxx1160407218_27 = 'Average Pitcher Abuse Points per game started.'; xxxpxxxxx1160407218_28 = 'Singles or singles allowed.'; xxxpxxxxx1160407218_29 = 'Batting average; hits divided by atbats.'; xxxpxxxxx1160407218_30 = 'Percentage of pitches thrown for balls.'; xxxpxxxxx1160407218_31 = 'The Baseline forecast, although it does not appear here, is a crucial intermediate step in creating a players forecast. The Baseline developed based on the players previous three seasons of performance. Both major league and (translated) minor league performances are considered. The Baseline forecast is also significant in that it attempts to remove luck from a forecast line. For example, a player who hit .310, but with a poor batting eye and unimpressive speed indicators, is probably not really a .310 hitter. Its more likely that hes a .290 hitter who had a few balls bounce his way, and the Baseline attempts to correct for this. \nSimilarly, a pitcher with an unusually low EqHR9 rate, but a high flyball rate, is likely to have achieved the low EqHR9 partly as a result of luck. In addition, the Baseline corrects for large disparities between a pitchers ERA and his PERA, and an unusually high or low hit rate on balls in play, which are highly subject to luck. '; xxxpxxxxx1160407218_32 = 'Approximate number of batting outs made while playing this position.'; xxxpxxxxx1160407218_33 = 'Batting average; hits divided by atbats. In PECOTA, Batting Average is one of five primary production metrics used in identifying a hitters comparables. It is defined as H/AB. '; xxxpxxxxx1160407218_34 = 'Bases on Balls, or bases on balls allowed.'; xxxpxxxxx1160407218_35 = 'Bases on balls allowed per 9 innings pitched.'; xxxpxxxxx1160407218_36 = 'Batters faced pitching.'; xxxpxxxxx1160407218_37 = 'Balks. Not recorded 18761880.'; xxxpxxxxx1160407218_38 = 'Batting Runs Above Replacement. The number of runs better than a hitter with a .230 EQA and the same number of outs; EQR  5 * OUT * .230^2.5.'; xxxpxxxxx1160407218_39 = 'Batting runs above a replacement at the same position. A replacement position player is one with an EQA equal to (230/260) times the average EqA for that position.'; xxxpxxxxx1160407218_40 = 'Breakout Rate is the percent chance that a hitters EqR/27 or a pitchers EqERA will improve by at least 20% relative to the weighted average of his EqR/27 in his three previous seasons of performance. High breakout rates are indicative of upside risk.This is a BP Premium article. To read it, sign up for Premium today! October 9, 2006 12:00 am
The Cardinals step up to be the dance partner for the Mets. \nMathematically, leverage is based on the win expectancy work done by Keith Woolner in BP 2005, and is defined as the change in the probability of winning the game from scoring (or allowing) one additional run in the current game situation divided by the change in probability from scoring\n(or allowing) one run at the start of the game.'; xxxpxxxxx1160433082_18 = 'Adjusted Pitcher Wins. Thorn and Palmers method for calculating a starters value in wins. Included for comparison with SNVA. APW values here calculated using runs instead of earned runs.'; xxxpxxxxx1160433082_19 = 'Support Neutral Lineupadjusted Value Added (SNVA adjusted for the MLVr of batters faced) per game pitched.'; xxxpxxxxx1160433082_20 = 'The number of double play opportunities (defined as less than two outs with runner(s) on first, first and second, or first second and third).'; xxxpxxxxx1160433082_21 = 'The percentage of double play opportunities turned into actual double plays by a pitcher or hitter.'; xxxpxxxxx1160433082_22 = 'Winning percentage. For teams, Win% is determined by dividing wins by games played. For pitchers, Win% is determined by dividing wins by total decisions. '; xxxpxxxxx1160433082_23 = 'Expected winning percentage for the pitcher, based on how often\na pitcher with the same innings pitched and runs allowed in each individual\ngame earned a win or loss historically in the modern era (1972present).'; xxxpxxxxx1160433082_24 = 'Attrition Rate is the percent chance that a hitters plate appearances or a pitchers opposing batters faced will decrease by at least 50% relative to his Baseline playing time forecast. Although it is generally a good indicator of the risk of injury, Attrition Rate will also capture seasons in which his playing time decreases due to poor performance or managerial decisions. '; xxxpxxxxx1160433082_25 = 'Batting average (hitters) or batting average allowed (pitchers).'; xxxpxxxxx1160433082_26 = 'Average number of pitches per start.'; xxxpxxxxx1160433082_27 = 'Average Pitcher Abuse Points per game started.'; xxxpxxxxx1160433082_28 = 'Singles or singles allowed.'; xxxpxxxxx1160433082_29 = 'Batting average; hits divided by atbats.'; xxxpxxxxx1160433082_30 = 'Percentage of pitches thrown for balls.'; xxxpxxxxx1160433082_31 = 'The Baseline forecast, although it does not appear here, is a crucial intermediate step in creating a players forecast. The Baseline developed based on the players previous three seasons of performance. Both major league and (translated) minor league performances are considered. The remainder of this post cannot be viewed at this subscription level. Please click here to subscribe. This is a BP Premium article. To read it, sign up for Premium today! October 7, 2006 12:00 am
The A's won a Division Series, and they did it their way. The Tigers are one win away from joining them in an ALCS matchup no one predicted. \nMathematically, leverage is based on the win expectancy work done by Keith Woolner in BP 2005, and is defined as the change in the probability of winning the game from scoring (or allowing) one additional run in the current game situation divided by the change in probability from scoring\n(or allowing) one run at the start of the game.'; xxxpxxxxx1160276734_18 = 'Adjusted Pitcher Wins. Thorn and Palmers method for calculating a starters value in wins. Included for comparison with SNVA. APW values here calculated using runs instead of earned runs.'; xxxpxxxxx1160276734_19 = 'Support Neutral Lineupadjusted Value Added (SNVA adjusted for the MLVr of batters faced) per game pitched.'; xxxpxxxxx1160276734_20 = 'The number of double play opportunities (defined as less than two outs with runner(s) on first, first and second, or first second and third).'; xxxpxxxxx1160276734_21 = 'The percentage of double play opportunities turned into actual double plays by a pitcher or hitter.'; xxxpxxxxx1160276734_22 = 'Winning percentage. For teams, Win% is determined by dividing wins by games played. For pitchers, Win% is determined by dividing wins by total decisions. '; xxxpxxxxx1160276734_23 = 'Expected winning percentage for the pitcher, based on how often\na pitcher with the same innings pitched and runs allowed in each individual\ngame earned a win or loss historically in the modern era (1972present).'; xxxpxxxxx1160276734_24 = 'Attrition Rate is the percent chance that a hitters plate appearances or a pitchers opposing batters faced will decrease by at least 50% relative to his Baseline playing time forecast. Although it is generally a good indicator of the risk of injury, Attrition Rate will also capture seasons in which his playing time decreases due to poor performance or managerial decisions. '; xxxpxxxxx1160276734_25 = 'Batting average (hitters) or batting average allowed (pitchers).'; xxxpxxxxx1160276734_26 = 'Average number of pitches per start.'; xxxpxxxxx1160276734_27 = 'Average Pitcher Abuse Points per game started.'; xxxpxxxxx1160276734_28 = 'Singles or singles allowed.'; xxxpxxxxx1160276734_29 = 'Batting average; hits divided by atbats.'; xxxpxxxxx1160276734_30 = 'Percentage of pitches thrown for balls.'; xxxpxxxxx1160276734_31 = 'The Baseline forecast, although it does not appear here, is a crucial intermediate step in creating a players forecast. The Baseline developed based on the players previous three seasons of performance. Both major league and (translated) minor league performances are considered. The remainder of this post cannot be viewed at this subscription level. Please click here to subscribe. This is a BP Premium article. To read it, sign up for Premium today! October 6, 2006 12:00 am
The Yankees continued their run through the ... hey, not so fast! In San Diego, the Cardinals continued to make a statement about the importance of homefield advantage, while in New York the Mets were the one team to keep order in the first two games. \nMathematically, leverage is based on the win expectancy work done by Keith Woolner in BP 2005, and is defined as the change in the probability of winning the game from scoring (or allowing) one additional run in the current game situation divided by the change in probability from scoring\n(or allowing) one run at the start of the game.'; xxxpxxxxx1160157644_18 = 'Adjusted Pitcher Wins. Thorn and Palmers method for calculating a starters value in wins. Included for comparison with SNVA. APW values here calculated using runs instead of earned runs.'; xxxpxxxxx1160157644_19 = 'Support Neutral Lineupadjusted Value Added (SNVA adjusted for the MLVr of batters faced) per game pitched.'; xxxpxxxxx1160157644_20 = 'The number of double play opportunities (defined as less than two outs with runner(s) on first, first and second, or first second and third).'; xxxpxxxxx1160157644_21 = 'The percentage of double play opportunities turned into actual double plays by a pitcher or hitter.'; xxxpxxxxx1160157644_22 = 'Winning percentage. For teams, Win% is determined by dividing wins by games played. For pitchers, Win% is determined by dividing wins by total decisions. '; xxxpxxxxx1160157644_23 = 'Expected winning percentage for the pitcher, based on how often\na pitcher with the same innings pitched and runs allowed in each individual\ngame earned a win or loss historically in the modern era (1972present).'; xxxpxxxxx1160157644_24 = 'Attrition Rate is the percent chance that a hitters plate appearances or a pitchers opposing batters faced will decrease by at least 50% relative to his Baseline playing time forecast. Although it is generally a good indicator of the risk of injury, Attrition Rate will also capture seasons in which his playing time decreases due to poor performance or managerial decisions. '; xxxpxxxxx1160157644_25 = 'Batting average (hitters) or batting average allowed (pitchers).'; xxxpxxxxx1160157644_26 = 'Average number of pitches per start.'; xxxpxxxxx1160157644_27 = 'Average Pitcher Abuse Points per game started.'; xxxpxxxxx1160157644_28 = 'Singles or singles allowed.'; xxxpxxxxx1160157644_29 = 'Batting average; hits divided by atbats.'; xxxpxxxxx1160157644_30 = 'Percentage of pitches thrown for balls.'; xxxpxxxxx1160157644_31 = 'The Baseline forecast, although it does not appear here, is a crucial intermediate step in creating a players forecast. The Baseline developed based on the players previous three seasons of performance. Both major league and (translated) minor league performances are considered. The remainder of this post cannot be viewed at this subscription level. Please click here to subscribe. October 6, 2006 12:00 am
Jim cleans up some old business, ponders the alltime greats at second base, and tries to avoid throwing things at the TV set. \nMathematically, leverage is based on the win expectancy work done by Keith Woolner in BP 2005, and is defined as the change in the probability of winning the game from scoring (or allowing) one additional run in the current game situation divided by the change in probability from scoring\n(or allowing) one run at the start of the game.'; xxxpxxxxx1160158525_18 = 'Adjusted Pitcher Wins. Thorn and Palmers method for calculating a starters value in wins. Included for comparison with SNVA. APW values here calculated using runs instead of earned runs.'; xxxpxxxxx1160158525_19 = 'Support Neutral Lineupadjusted Value Added (SNVA adjusted for the MLVr of batters faced) per game pitched.'; xxxpxxxxx1160158525_20 = 'The number of double play opportunities (defined as less than two outs with runner(s) on first, first and second, or first second and third).'; xxxpxxxxx1160158525_21 = 'The percentage of double play opportunities turned into actual double plays by a pitcher or hitter.'; xxxpxxxxx1160158525_22 = 'Winning percentage. For teams, Win% is determined by dividing wins by games played. For pitchers, Win% is determined by dividing wins by total decisions. '; xxxpxxxxx1160158525_23 = 'Expected winning percentage for the pitcher, based on how often\na pitcher with the same innings pitched and runs allowed in each individual\ngame earned a win or loss historically in the modern era (1972present).'; xxxpxxxxx1160158525_24 = 'Attrition Rate is the percent chance that a hitters plate appearances or a pitchers opposing batters faced will decrease by at least 50% relative to his Baseline playing time forecast. Although it is generally a good indicator of the risk of injury, Attrition Rate will also capture seasons in which his playing time decreases due to poor performance or managerial decisions. '; xxxpxxxxx1160158525_25 = 'Batting average (hitters) or batting average allowed (pitchers).'; xxxpxxxxx1160158525_26 = 'Average number of pitches per start.'; xxxpxxxxx1160158525_27 = 'Average Pitcher Abuse Points per game started.'; xxxpxxxxx1160158525_28 = 'Singles or singles allowed.'; xxxpxxxxx1160158525_29 = 'Batting average; hits divided by atbats.'; xxxpxxxxx1160158525_30 = 'Percentage of pitches thrown for balls.'; xxxpxxxxx1160158525_31 = 'The Baseline forecast, although it does not appear here, is a crucial intermediate step in creating a players forecast. The Baseline developed based on the players previous three seasons of performance. Both major league and (translated) minor league performances are considered. This is a BP Premium article. To read it, sign up for Premium today! October 5, 2006 12:00 am
The Play is the talk of the water coolers, but plenty of other things happened on an abbreviated second day. \nMathematically, leverage is based on the win expectancy work done by Keith Woolner in BP 2005, and is defined as the change in the probability of winning the game from scoring (or allowing) one additional run in the current game situation divided by the change in probability from scoring\n(or allowing) one run at the start of the game.'; xxxpxxxxx1160071649_18 = 'Adjusted Pitcher Wins. Thorn and Palmers method for calculating a starters value in wins. Included for comparison with SNVA. APW values here calculated using runs instead of earned runs.'; xxxpxxxxx1160071649_19 = 'Support Neutral Lineupadjusted Value Added (SNVA adjusted for the MLVr of batters faced) per game pitched.'; xxxpxxxxx1160071649_20 = 'The number of double play opportunities (defined as less than two outs with runner(s) on first, first and second, or first second and third).'; xxxpxxxxx1160071649_21 = 'The percentage of double play opportunities turned into actual double plays by a pitcher or hitter.'; xxxpxxxxx1160071649_22 = 'Winning percentage. For teams, Win% is determined by dividing wins by games played. For pitchers, Win% is determined by dividing wins by total decisions. '; xxxpxxxxx1160071649_23 = 'Expected winning percentage for the pitcher, based on how often\na pitcher with the same innings pitched and runs allowed in each individual\ngame earned a win or loss historically in the modern era (1972present).'; xxxpxxxxx1160071649_24 = 'Attrition Rate is the percent chance that a hitters plate appearances or a pitchers opposing batters faced will decrease by at least 50% relative to his Baseline playing time forecast. Although it is generally a good indicator of the risk of injury, Attrition Rate will also capture seasons in which his playing time decreases due to poor performance or managerial decisions. '; xxxpxxxxx1160071649_25 = 'Batting average (hitters) or batting average allowed (pitchers).'; xxxpxxxxx1160071649_26 = 'Average number of pitches per start.'; xxxpxxxxx1160071649_27 = 'Average Pitcher Abuse Points per game started.'; xxxpxxxxx1160071649_28 = 'Singles or singles allowed.'; xxxpxxxxx1160071649_29 = 'Batting average; hits divided by atbats.'; xxxpxxxxx1160071649_30 = 'Percentage of pitches thrown for balls.'; xxxpxxxxx1160071649_31 = 'The Baseline forecast, although it does not appear here, is a crucial intermediate step in creating a players forecast. The Baseline developed based on the players previous three seasons of performance. Both major league and (translated) minor league performances are considered. The remainder of this post cannot be viewed at this subscription level. Please click here to subscribe. This is a BP Premium article. To read it, sign up for Premium today! December 22, 2005 12:00 am
James discusses the curious practice of teams acquiring what they already have, and wonders about the notion of Replacement Value in the process. When judging the value of these acquisitions, it's very easy to fall back on metrics like VORP or WARP to estimate how much a player will add to a team in terms of runs or wins. Then, by comparing those totals to estimated economic incentives for making the playoffs and the increased revenue of more wins, an estimate of the player's economic value can be made as well. For example, those of you who are subscribers to Sports Illustrated may have noticed that Daniel G. Habib called upon PECOTA to estimate the value of the players signed to some of the more recent contracts this winter. Though it was not published, PECOTA's estimate for Burnett was $8.3 million per year for a five year deal. By that number, the Blue Jays appear to have overpaid by $2.7 million per season. The remainder of this post cannot be viewed at this subscription level. Please click here to subscribe. July 6, 2005 12:00 am
Keith Woolner, Steven Goldman, Jonah Keri and Neil deMause reach into the mailbag to address questions on using stats, pitching performances, stadium financing, and local broadcasters.
I was wondering something about MLVr. I always see players plugged into a lague average team whenever it is used, but can you plug Player X into a current team (say, put Lyle Overbay in the place of Kevin Millar in the Red Sox order) and still have the results work? It seems like it would work no problem, but I just wanted to make sure there was no reason that alluded me as to why it may not work. June 25, 2003 12:00 am
Nate Silver takes a closer look at replacement level in search of a better, zestier approach. When are pitchers most susceptible to injury? Well, always, but especially before age 23. What type of hitters reap the most benefit from Coors Field? Strikeoutheavy hitters like Preston Wilson. Are my feet growing bigger? No. Based on the available evidence, my socks are shrinking in the dryer (publication pending). October 12, 2000 12:00 am
\nMathematically, leverage is based on the win expectancy work done by Keith Woolner in BP 2005, and is defined as the change in the probability of winning the game from scoring (or allowing) one additional run in the current game situation divided by the change in probability from scoring\n(or allowing) one run at the start of the game.'; xxxpxxxxx1160184488_18 = 'Adjusted Pitcher Wins. Thorn and Palmers method for calculating a starters value in wins. Included for comparison with SNVA. APW values here calculated using runs instead of earned runs.'; xxxpxxxxx1160184488_19 = 'Support Neutral Lineupadjusted Value Added (SNVA adjusted for the MLVr of batters faced) per game pitched.'; xxxpxxxxx1160184488_20 = 'The number of double play opportunities (defined as less than two outs with runner(s) on first, first and second, or first second and third).'; xxxpxxxxx1160184488_21 = 'The percentage of double play opportunities turned into actual double plays by a pitcher or hitter.'; xxxpxxxxx1160184488_22 = 'Winning percentage. For teams, Win% is determined by dividing wins by games played. For pitchers, Win% is determined by dividing wins by total decisions. '; xxxpxxxxx1160184488_23 = 'Expected winning percentage for the pitcher, based on how often\na pitcher with the same innings pitched and runs allowed in each individual\ngame earned a win or loss historically in the modern era (1972present).'; xxxpxxxxx1160184488_24 = 'Attrition Rate is the percent chance that a hitters plate appearances or a pitchers opposing batters faced will decrease by at least 50% relative to his Baseline playing time forecast. Although it is generally a good indicator of the risk of injury, Attrition Rate will also capture seasons in which his playing time decreases due to poor performance or managerial decisions. '; xxxpxxxxx1160184488_25 = 'Batting average (hitters) or batting average allowed (pitchers).'; xxxpxxxxx1160184488_26 = 'Average number of pitches per start.'; xxxpxxxxx1160184488_27 = 'Average Pitcher Abuse Points per game started.'; xxxpxxxxx1160184488_28 = 'Singles or singles allowed.'; xxxpxxxxx1160184488_29 = 'Batting average; hits divided by atbats.'; xxxpxxxxx1160184488_30 = 'Percentage of pitches thrown for balls.'; xxxpxxxxx1160184488_31 = 'The Baseline forecast, although it does not appear here, is a crucial intermediate step in creating a players forecast. The Baseline developed based on the players previous three seasons of performance. Both major league and (translated) minor league performances are considered. The Baseline forecast is also significant in that it attempts to remove luck from a forecast line. For example, a player who hit .310, but with a poor batting eye and unimpressive speed indicators, is probably not really a .310 hitter. Its more likely that hes a .290 hitter who had a few balls bounce his way, and the Baseline attempts to correct for this. \nSimilarly, a pitcher with an unusually low EqHR9 rate, but a high flyball rate, is likely to have achieved the low EqHR9 partly as a result of luck. In addition, the Baseline corrects for large disparities between a pitchers ERA and his PERA, and an unusually high or low hit rate on balls in play, which are highly subject to luck. '; xxxpxxxxx1160184488_32 = 'Approximate number of batting outs made while playing this position.'; xxxpxxxxx1160184488_33 = 'Batting average; hits divided by atbats. In PECOTA, Batting Average is one of five primary production metrics used in identifying a hitters comparables. It is defined as H/AB. '; xxxpxxxxx1160184488_34 = 'Bases on Balls, or bases on balls allowed.'; xxxpxxxxx1160184488_35 = 'Bases on balls allowed per 9 innings pitched.'; xxxpxxxxx1160184488_36 = 'Batters faced pitching.'; xxxpxxxxx1160184488_37 = 'Balks. Not recorded 18761880.'; xxxpxxxxx1160184488_38 = 'Batting Runs Above Replacement. The number of runs better than a hitter with a .230 EQA and the same number of outs; EQR  5 * OUT * .230^2.5.'; xxxpxxxxx1160184488_39 = 'Batting runs above a replacement at the same position. A replacement position player is one with an EQA equal to (230/260) times the average EqA for that position.'; xxxpxxxxx1160184488_40 = 'Breakout Rate is the percent chance that a hitters EqR/27 or a pitchers EqERA will improve by at least 20% relative to the weighted average of his EqR/27 in his three previous seasons of performance. High breakout rates are indicative of upside risk.
 